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A Fokker-Planck equation, such as the one used in the theory of Brownian motion, and the Bhatnagar-
Gross-Krook equation, that conserves only number density, are compared via their transition probabilities. 
These two equations have been used in various problems arising in the study of plasmas. It is shown that for 
time intervals large compared with the average collision time, the two equations give the same results. For 
the opposite limit of times small compared with the collision time, the disparity between the two equations 
increases as the initial velocity of the test particle increases; however, the difference between the two tran
sition probabilities is shown to be reduced if the initial velocity distribution is Maxwellian. 

I. INTRODUCTION 

THE Fokker-Planck equation (abbreviated here as 
the F-P equation) referred to in this article is the 

one originally introduced in the study of the motion of 
a Brownian particle. A lucid discussion of it is given 
in Ref. 1. Another equation under the same name, 
pertinent to the study of ionized gases, was recently 
introduced by Rosenbluth, McDonald, and Judd.2 The 
connection between these two F-P equations is discussed 
in Appendix A. 

The Bhatnagar-Gross-Krook3 equation (abbreviated 
here as the BGK equation) studied in this paper is the 
one that conserves only the number density; it has also 
been presented in a form which satisfies all conservation 
principles. Although originally the BGK equation was 
derived on a phenomenological basis, some connection 
between this and the Boltzmann equation can be 
established.4 

Because of the mathematical difficulties posed by the 
use of more appropriate equations, such as the 
Boltzmann equation or the F-P equation of Rosenbluth 
et at., recently, several authors5 have used a Brownian 
motion F-P equation or BGK equation for the investi
gation of various problems arising in the study of ionized 
gases. Both of these latter equations share the following 
common properties: (a) a given initial velocity distribu
tion will relax to a Maxwellian; (b) the number density 
is conserved but momentum and energy are not. 

Recently the effects of collisions on electron density 
fluctuations in plasmas have been investigated by 
Dougherty and Farley6 using a BGK equation and by 
the present author7 using a F-P equation. The remark
able similarity between the results given by these two 
equations led to the present investigation. For the 
limiting cases of a large amount of collisions and of no 

1 S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). 
2 M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. 

Rev. 107, 1 (1957). 
8 P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 

511 (1954). 
4 E. A. Deslodge and S. W. Matthysse, Am. J. Phys. 28,1 (1960). 
6 A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456 (1958); 

J. P. Dougherty, J. Fluid Mech. 16, 126 (1963); also see Refs. 6 
and 7. 

6 J. P. Dougherty and P. T. Farley, J. Geophys. Res. 68, 5473 
(1963). 

7 M. S. Grewal, Phys. Rev. 134, A86 (1964). 

collisions the results were identical. For the collisionless 
case both equations give the same result for the trivial 
reason that both reduce to the collisionless Boltzmann 
equation. However, identical results for the collision-
dominated cases were quite unexpected. 

In Sec. II the transition probabilities for the F-P 
equation, for the two limiting cases of time intervals 
large and small compared with the average collision 
time, are summarized. In Sec. I l l corresponding results 
for the BGK equation are derived and compared with 
those of the F-P equation. Transition probabilities for 
both these equations are discussed only for the case of 
no electric fields. However, for the investigation of 
problems in plasmas where the BGK or F-P equation is 
used in the linearized form, e.g., oscillations, fluctua
tions, ac conductivity, etc., their solution can be 
constructed from the field-free bivariate transition 
probability for the corresponding equation (see for 
example Ref. 7). 

II. DISCUSSION OF RESULTS FOR F-P EQUATION 

Before proceeding to the analysis of the BGK 
equation, we summarize the corresponding results for 
the F-P equation given in Ref. 1. Letting F(r,tfv), 
denote the joint position and velocity distribution at 
time /, the F-P equation under consideration may be 
written as 

f d d\ d 
-+v~)F(r , / ,v)=/3— 

\dt dx/ dv \ 2 dvJ 2 dv/ 
(1) 

where fi is the effective collision frequency, and c2= 26/m 
is the average thermal speed in which m and 0 denote 
the mass and temperature, respectively. The transition 
probability in position only W{r,t) Vo), i.e., the distribu
tion of the displacement r at time t given that the 
particle is at r = 0 with a velocity Vo at time /=0, can 
be written as [Eq. (171) of Ref. 1] 

IF(r,*;vo) = 

Xexp 

P 1 

irc2[2pt- 3+4 exp (-fit) - exp ( - 2/3/)] J 

ff l r -VoCl-exp(-^) ] / i g^ | 

c2 [2^-3+4exp(- j80-exp(-2 /30]J * 

3/2 

(2) 
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The bivariate probability distribution W(r,\,t; v0) 
governing the probability of the simultaneous occur
rence of the velocity v and the position r at time t can 
also be written down [Eq. (280) of Ref. 1], but since 
we will evaluate the corresponding expression for the 
BGK equation only for the case /3C>>1, we will present 
W(r,\,t; v0) to this approximation at a later point. 

For time intervals large compared with /3 -1 , Eq. (2) 
can be simplified by observing that under these condi
tions, exponential and constant terms can be neglected 
in comparison with fit; and that ( | r | 2 ) a v is of the order 
of cH/(3, making Vo/3-1 small in comparison with average 
r. Thus, for / f t» l , Eq. (2) simplifies to 

W(t,t; v0) = {P/lircH)^2 e x P ( ~ I r I W2c20 • (3) 

In the same approximation, the bivariate probability 
distribution W(r,v,t; Vo) is simply given by the product 
of W{t,t\ Vo) and a Maxwellian velocity distribution 
in v. 

For time intervals small compared with fi~l we 
simplify Eq. (2) by expanding exponentials in powers 
of fit and retaining the lowest order terms. Thus for 
/ f t« l , Eq. (2) reduces to 

I t follows from Eq. (6) that 

jftFo(v) 
F(k,s,v)-

PQ(y) r 5(v—vo) 
/F(k,5,v)rfv+ . (7) 

ik-Y+fiJ s+ik-Y+fi, s+ik-Y+fi 

Integrating over v and denoting y\F(k,s,v)dv by 
N(h,s), we obtain, after evaluating the integral 
flFo(Y)/(s+ik.Y+t3)ldY, 

N(k,s) 
1/(s+ik-Y+fi) 

1 - (fiy/w/ck) expt(s+(3)/ckJ eric[(s+fi)/ck~]' 
(8) 

W(r,t;vo)-
XlicBfflJ \ 2BcH* J 2fic2tz 

(4) 

III. TRANSITION PROBABILITIES FOR 
BGK EQUATION 

Using the nomenclature introduced in Eq. (1), the 
BGK equation under consideration may be written as 

d an 
[ - + v — ]F(r,/,v) = -/3F(r,/,v) 
Ldt drJ 

+pF0(Y)JF(i,t,Y)dY, (5) Wck)(V*) 

where erfc(ff) is the complementary error function 
defined by erfc(x)= (2/vV)X°° exp(-t2)dt (tabulated 
e.g., in Ref. 8). 

Observe that N(k,s) in the transformed representa
tion, has the same interpretation as W(t,t; Vo) intro
duced earlier in connection with the F-P equation. 
Different symbols have been introduced to avoid the 
use of subscripts. 

The transformed bivariate probability distribution 
for the BGK equation can now be obtained from Eq. (7) 
after substituting N(k,s) from Eq. (8) for fF(k9s,\)dv 
in the right-hand side. To keep the analysis tractable 
we will invert the transform only for the two limiting 
cases (a) /3£»1 and (b) / f t« l . 

(a) 5*»1 

As shall presently be seen from the results given in 
Eq. (10), c2k2 is of the order of fit-1 [please note the 
similarity of this observation with the corresponding 
one made in the reduction of Eq. (2) to Eq. (3)]. Thus, 
using the following asymptotic expansion for erfc(#) 
for large values of its arguments 

/s+fi\2 /s+fi\ 
expl J erfc J = 

\ ck I \ ck I 

where FO(Y)= (7rc2)~3/2 exp(—v2/c2) represents the nor
malized Maxwellian distribution. 

The transition probability for Eq. (5) is analyzed 
using a Laplace transform with respect to time and a 
Fourier transform with respect to position. If one defines 

X 
f 1 / ck \ 2 1.3/ ck V 

1 2\s+fiJ 4 \s+fiJ 

_fi__ 

s+fi 

1.3/ ck 

+fi> + • 

/.oo /•+°o 

F(b,s,\)= / dte-st exp(-ik-r)F(r ,*,v)dr, 

J 0 J — oo 

then Eq. (5) reads, on transformation, 

(s+ik'Y)F(k,S,Y)-d{Y-Yd} = -pF(k,S,Y) 

+j8F0(v)/"F(k, j ,v) iv, (6) 

where 5 represents Dirac's delta function and we have 
used F(r,0,v) —6(r)5(v—Vo) for the initial conditions. 

Equation (8) can be written as 

2V(k,*)= f (s+p)\ l - ~ [ l - - f - ) l 
L l s+pL 2\s+p/J 

+a.w)t_LrI_V-i.y+...]}f 

(I = H-

s+pl 
1 c2P/3 

2\s+p/ 

2 (s+py 

+ A - v 0 { l -I'̂ IJ- (9) 

8 B. D. Fried and S. D. Conte, The Plasma Dispersion Function 
(Academic Press Inc., New York, 1961). 
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For the behavior of N(k,i) for time intervals large 
compared with /3~x we can approximate /3/(H-/?)2 by 
1//3 and p/(s+fi) by 1, and obtain in the limit of /3C»1 
after inverting the Laplace transform 

= (/V2TTC203/2 e x p ( - \i\2p/2<?t) 

/ k c t\ 
iV(k;/) = exp( ) . (10) 

\ 2/3/ 

Inverting the Fourier transform next, Eq. (10) yields 

N(r,t; v0)= [1/(2TT)S] [exp(-P<X/2p) exp(ik-r)dk 

(ID 
(vo is inserted into the arguments of N as an initial 
condition). 

The above expression for the transition probability 
for the BGK equation is identical with that of the F-P 
equation presented earlier in Eq. (3). We note that in 
both cases the distribution of displacement r is inde
pendent of the initial velocity vo. 

Substituting N(k,s) from Eq. (9) for fF(k,s,y)dy in 
the right-hand side of Eq. (7), it reads 

F(kys,v) = F0(v) 
/s+P * - v \ / k2c2\ 

\ 8 8 A 28/ 2(3. 

5 ( v 0 — Vo) 

s+ik*Y+p' 
(12) 

Once again, observing the order of magnitude of 
different terms, i.e., k- v / / ^ (/ft)-1'2, (s+P)/p~l etc., 
we obtain for /3CM, after effecting the inversion of 

Laplace and Fourier transforms 

N(r,t,v; Y0) = Fo(v)(p/2Tcnyi2 e x p ( - \r\2p/2cH). (13) 

I t may be observed that for /3C>>1, the bivariate 
probability distribution is also identical for the BGK 
and the F-P equations. 

In passing we remark that, although at the outset it 
may appear that the transition probabilities for all 
collision models which relax an initial velocity distribu
tion to a Maxwellian in about a collision time will be 
roughly the same for /3£2>1, this need not be so. We 
illustrate the point by the following simple example: 
The transition probability of a BGK equation with a 
collision term that does not conserve number density 
but relaxes an initial velocity distribution to a Max
wellian, i.e., with (d//d/)c oii= — 0/+/3/o(v), is given by 

exp(-jW)5{v-v0}5{r-vrf} + [ l - e x p ( - / ? 0 ] / o ( v ) . 

This expression, for /3£2>1 reduces to /o(v), indicating 
that not only has the initial velocity distribution 
become Maxwellian in about one collision time but also 
the displacement r has been uniformly distributed over 
the whole space. This is in contrast to the previous 
results for the F-P equation and the number-density 
conserving BGK equation where for #£2>1, although 
the velocity distribution has become Maxwellian, the 
distribution of displacement r is still proceeding in 
accordance with Eq. (11). 

(b) &<«1 

For time intervals small compared with /3_1, we 
rewrite the expression for N(k,s) given in Eq. (8) in a 
form suitable for expansion in powers of fit, 

N(±,s) = -
f exp(—ik«VoO exp(—fit) exp(—st)dt 

(14) 

1-/5 / e x p ( - £ W / 4 ) exp( -0O exp(-st)dt 
Jo 

On expanding exp(—fit) in powers of fit, Eq. (14) reads 

/ exp(—ik'\0t) exp(—st)dt—f3 J t exp(—ik«v00 exp(—st)dt-\ 
./o J o 

N{k)S)= _ . (15) 
/•OO /»00 

1-/3 / exp( -£W/4) exp(-st)dt+p2 / t exp( -£W/4) exp(-st)dt-{ 
Jo Jo 

After carrying out the division and collecting the terms up to first order in /?/, it follows from Eq. (15) that 

/»oo p /»£ 

N(k,s)= I exp(—ik*\ot) exp(—st)dt—/5 / / exp(—ik«voO exp(—st)dt 
Jo Lj o 

/

OO /»00 —I 

exp(-ik-\0t)exp(-st)dt e x p ( - ^ 2 c ¥ / 4 ) e x p ( - ^ ) ^ ." (16) 
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After inverting the Laplace transform, the preceding equation yields 

N(k,t) = exp(-ik-xQl)(l-(3t) + / e x p [ - i k . v 0 ( / - r ) ] e x p ( - ^ 2 c V / 4 ) ^ r . 
Jo 

(17) 

The Laplace transform inversion of the last term on right-hand side of Eq. (16) is performed using the convolution 
theorem. 

Next, inverting the Fourier transform, we finally obtain for the transition probability of the BGK equation 
for #<<% 

' | r o - v 0 ( ^ - r ) | 2 ] 
Ar(r,/;v0) = S ( r - V o O ( l - / 3 0 + ^ T / ~ e x P W- (18) 

7 T 3 / W o T3 

Before comparing N(r}t\ vo) given in Eq. (18) with 
the corresponding expression for the F-P equation, we 
present another derivation of the results given in 
Eq. (18) based on a physical interpretation of the BGK 
equation. For this purpose, Eq. (5) is rewritten as 

rd d-\ 
- + v — F(r,*,v)=-j8F(r,*,v) 

Ldt 6rJ 

+pF0(v)[F(r,tyY)dY. (5) 

The operator appearing on the right-hand side of 
this equation represents the change in the distribution 
function due to collisions. Thus, if it were not for the 
left-hand side the distribution function would remain 
constant along the characteristics, r— xt. The two 
terms appearing on the right-hand side, which represent 
the effects of collisions may be interpreted as follows: 
The particles in a range dx about velocity v are, accord
ing to the first term, absorbed at a rate proportional to 
F(r,t,x) at (r,t) and by virtue of the second term are 
re-emitted at the same instant with a Maxwellian 
distribution Fo(x). Thus if we ignore for a moment the 
re-emitted particles, then the transition probability of 
a particle which started at r = 0 at / = 0 with velocity v0 

is given by 

No(r,t; v0) = 5(r-voO exp(- / f t ) , 

which to first order in fit is 

iVo(r,/;vo) = fi(r-vrf)(l-/30- (^) 

Next we trace the evolution of the re-emitted 
particles. Up to the order of /3t to which we are working, 
the fraction of the original particle absorbed and also 
re-emitted, at say / = r in a range dr at position 

FIG. 1. Cross sec
tions of surfaces of 
probability distribu
tion N = W= 1.0 for 
F-P, and BGK equa
tions for ^=1.0. 
Dashed curves are 
for /?/ = 0.1 and solid 
ones for 8t —0.5. 

r(r)=Vor, along the straight line trajectory of the 
original particle, is equal to fibr. Once again Eq. (5) 
governs the transport of this fraction. At the instant of 
emission, because of its Maxwellian velocity distribu
tion, the collision terms of Eq. (5) go to zero, and the 
fraction j38r spreads according to the left-hand side. 
But the moment this fraction leaves the source point 
r(r) the distribution is no longer Maxwellian at any r, 
and the collision terms come into play again. However, 
as seen earlier, the effects of the collisions give rise to 
terms of the order of fit and since the starting density 
fidr is itself of this order, the resulting terms are of the 
second order and may therefore be neglected. Thus for 
the re-emitted particles we can neglect the right-hand 
side of Eq. (5). Governed only by the operator appear
ing on the left-hand side, the distribution of the fraction 
/38r emitted at time r after a time interval t—-r is given 
by 

iVT(r )^-r)=(/36r/n3/2c3) / < r - [ r ( r ) + v ( / - r ) ] } 

Xexp(—v2/c2)dx, 

which after evaluating the integral yields 

/35r 1 f | r - r ( r ) | 2 j 
Nr(r,l-T) = -

I F V (t-rj 
exp 

c\t-rY 
(20) 

To get the complete distribution of the displacement 
r at time t of the particle that started at r = 0 at t=Q 
with velocity vo, we integrate Eq. (20) over r from 
r = 0 to r=t, with r(r)=VoT, and add to the result of 
Eq. (19) to obtain 

AT(r,/;vo) = 5 ( r -voO( l - j 80 -
n 3 / 2 c 3 

Xexp I-

(t-r)' 

| r— Vox | i 

c2(t-r)2 
(21) 

Equation (21) becomes identical with Eq. (18) after 
changing the variable of integration from r to t— r. 

Returning to Eq. (18), we introduce the following 
nondimensional parameters: 

v = N A ; r = # ; £=G3A)(r-VoO; m ) 
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FIG. 2. Cross sections of 
surfaces of probability distribu
tion N = W= 1.0 for F-P, and 
BGK equations for /3/ = 0.1. 
The solid curves are for BGK 
equation for the different 
values of v indicated. 

-Srf+g 

In terms of these dimensionless quantities, and after 
evaluating the integral, Eq. (18) reads 

iV(? , r ; , )=^A 3 )5 (0 ( l - r ) 

fiz 1 
H der| 

w+f2)1 /2 

vr\ 

X der 

1/2 J 

L T (ijH-f*)1"] 

2tf 

(m2)1 

rO?2+r2)1/2 tf 
Xerfc H 

L r (rj2+r2) 

W+f2)1'2 

j}' (23) 

where erfc(#) has been defined earlier following Eq. (8) 
and der(x) represents the derivative of the error func
tion denned by der(#)= (2/y/w) exp(—#2). 

In terms of the same dimensionless quantities the 
corresponding expression for the F-P equation, given 
earlier in Eq. (4) can be written as 

Wfor; V) = (/33A3)(3/27TT3)3/2 exp(-3£2/2r3). (24) 

We observe from Eq. (23) that the transition proba
bility for the BGK equation, unlike that of the F-P 
equation, is neither spherically symmetric nor inde
pendent of the initial velocity in the coordinate system 
moving with velocity vo, which has been tacitly intro
duced through the set of Eqs. (22). This lack of sym
metry and added dependence on the parameter v of 
Eq. (23) makes it difficult to compare with Eq. (24). 
The two expressions given in Eqs. (23) and (24) are 
compared by considering surfaces of equal probability 
distribution. Figures 1 and 2 show the cross sections of 
such surfaces for which N= W=1.0. From Fig. 1, which 
shows the evolution of this surface in time, we see that 
for small time (r^O.l) the surface corresponding to the 
BGK equation has advanced further than the corre
sponding one for the F-P equation; for comparatively 
large times (r^O.5) it is the other way around. Figure 2 
shows the surface, once again for N~W— 1, drawn for 
different values of v. It is seen that the disparity in the 
behavior of the two equations increases as v increases. 

So far we have compared the transition probabilities 
for the two equations when a definite initial velocity vo 
is prescribed. Now we ask for the distribution of 
displacement r according to the two equations when the 
initial velocity has a Maxwellian distribution. 

Averaging Eq. (18) over a Maxwellian distribution 
in the initial velocity vo, we find after some algebra 

tf(r,*) = 
exp(—-r2/c2t2)\ 

7r3 'W 
1 - / 3 * -

(r/ct) 

rjct 

Xexp(—f2/c2/2) / exp(; (%2)d% , (25) 

[The function exp(—y2)Jlv exp(x2)dx has been tabu
lated; see, for example, Ref. 8.] 

The corresponding expression for the F-P equation 
obtained by averaging Eq. (4) over a Maxwellian 
distribution is 

W(r,t) = ( l+2^/3)-3 '2 

7r3 'W 

X exp| - (r2A2/2) 1 . (26) 
L 1+2131/3 J 

Figure 3 shows the probability of rinding the particle, 
according to Eqs. (25) and (26), in a sphere of thickness 
d(r/ct) as a function of its radius r/ct for fit equal to 0.1 
and 0.5. As can be readily seen, the difference between 
the distribution of the displacement r as given by the 
F-P equation and the BGK equation is greatly reduced 
for fit=0.1 when the initial velocity is prescribed by a 
Maxwellian distribution. However, as seen from Fig. 3, 
this difference increases with fit. Since the two equations 
give identical results for fi£>>l, it seems probable that 
maximum disparity between the two equations occurs 
around the fit value of 1. 

From the proceeding analysis on the comparison of 
the F-P and BGK equations we see that for the investi
gation of problems in plasmas where one is interested in 
time intervals large compared with the average collision 
time fir1, the two equations will yield the same results. 
When the time intervals of interest are small compared 
with fir1, the two equations will again give comparable 
results in those problems where thermodynamic equili
brium is assumed, and thus the initial velocity of the 
particle is taken as Maxwellian. Such would be the case, 
for example, in the study of density fluctuations in a 
plasma at thermodynamic equilibrium. The disparity 

FIG. 3. Distribution of displacement r, for BGK and F-P 
equations, when the initial velocity is taken as Maxwellian. 
Dashed curves are for the value of fit—0.1 and solid ones for 
iS*=0.5. 
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between the results given by these two equations will 
probably be the greatest when the problem under 
consideration involves study of the dispersion of par
ticles by collisions with an anisotropic initial velocity 
distribution, in time intervals close to a collision time 
/2-1. Such a problem arises in the study of the ac 
conductivity of a plasma for frequencies close to /3. 
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APPENDIX A 

In this appendix it is shown that by making approxi
mations relevant to the motion of a Brownian particle, 
the collision term of the F-P equation of Rosenbluth 
et al. can be reduced to that of the Brownian F-P 
equation. The collision term of the F-P equation with 
the use of a superscript b for quantities pertaining to 
the Brownian particle, may be written as, e.g., see 
Ref. 9, 

C = -Vv<A*)/&(v)+JVVVV: {(AvAv)fb(v)} , (Al) 

where Vv means gradient in velocity space and, (Av) 
and (AflAtf), which are functions of v, are given by 

(Av) = T L (l+mh/ma)Vy / dVfa{y') , 
« J [v— v'l 

(A2) 

<A*A^ = rVvVvZ fdvffa(v')\Y-Yf\, 

in which summation is to be carried out over all the 
species present including the one whose change in 
distribution function is evaluated. The constant r is 
denned in Ref. 9. 

For the motion of a Brownian particle, where we are 
concerned with the change in the distribution function 
of a small number of particles of colloidal size immersed 
in a fluid, we make the following observations: 

(1) The number density of the Brownian particles is 
very much smaller than that of the background fluid; 
thus the collisions that a Brownian particle suffers are 
almost entirely with the particles of background fluid. 

9 A. N. Kaufman, The Theory of Neutral and Ionized Gases, 
edited by C. DeWitt and J. F. Detouf (John Wiley & Sons, Inc., 
New York, 1960). 

As a result, the summations in Eq. (A2) include terms 
only pertaining to the fluid, which we later on denote 
by superscript / ; 

(2) the mass of the Brownian particle is much larger 
than that of a fluid particle; thus (\-\-mb/mf)^mb/mf; 

(3) the velocity of the fluid particles is Max-
wellian. 

Using these approximations after evaluating the 
integrals, we obtain from Eq. (A2) 

<Az>)= I V ( W & M 0 V v [ ( V v ) erf{v/cf)~\, 

(AvAv) = Tnf(l/\) erf (\/cf), 

where cf is the average thermal speed of the fluid 
particles. Now the temperatures of the Brownian 
particles and the fluid are of the same order. Since the 
Brownian particle is much heavier than a fluid particle, 
v/cf is, for most of fb(v), a very small number; thus 
expanding the error function for small values of its 
argument, we obtain from Eq. (A3) 

(Av)= -Tn'(mb/m0 ( 2 / y V ) 3 v / V ) 3 , 

<A*A*>=r^(2/ v
/7r) 3 l /^ . ( 

If we now let p denote Tnf{mb/mf){2/^TrY{cf)~z and 
use the fact that (cf)2=26f/mf and 6f^6b, we find 

< A i > = - 0 v , 

%(AvAv)=p6b/mb. 

The expressions from Eq. (A5), when substituted in 
Eq. (Al), yield the collision terms for the Brownian 
motion F-P equation. 

Finally we remark that since the F-P equation of 
Rosenbluth et al. may be looked upon as a simplification 
of the Boltzmann equation valid for small-angle 
collisions, the preceding analysis shows a relation 
between the Boltzmann equation and the Brownian-
motion F-P equation. In the derivation of the F-P 
equation of Rosenbluth et al. from the Boltzmann 
equation, the retaining of only small-angle collision 
terms was based on the observation that for plasmas, 
where long-range Coulomb forces govern the interaction 
of particles, the accumulative effect of the frequent 
small-angle collisions outweighs the effect of the 
comparatively infrequent large-angle collisions. In the 
case of the motion of a Brownian particle, the neglect 
of large-angle collisions can be justified by the fact that 
the mass of a Brownian particle is much larger than 
that of the fluid particle with which it collides. 


